

MICRO PROCESSOR	MICROCONTROLLER
General purpose device which is called a CPU	Dedicated chip which is also called single chip computer
Do not contain on-chip I/O port, timers, memories etc.	It include RAM, ROM, serial and parallel interface, timers etc.
Instructions are mainly nibble or byte addressable	Instructions are both bit addressable as well as byte addressable
Design is complex and expensive	Design is rather simple and cost effective
Large number of instructions and is complex	Less number of instructions and is simple
Microprocessor has Zero status flag	Microcontroller has no zero flag
Heart of computer system	Heart of embedded system

MICRO PROCESSOR	MICROCONTROLLER
ince memory and I/O has to be connected externally the circuit become arge	Since memory and I/O are present internally, the circuit is small
ess number of registers, hence more operations are memory based	Have more number of registers, hence the programs are easier to write
Mainly used in personal computers	Used in washing machine, MP3 players etc.
These are based on Von Neumann model	Based on Harvard architecture

- Embedded microcontroller
- Instruction set
- Memory architecture
- IC chip or VLSI core file and family

Prepared By Mr. EBIN PM, Chandigarh University, Punjab

EDULINE

5

EDULINE

13

- Data Pointer (DPTR) : 16 bit register , holds the external data memory address of the data being currently fetched or to be fetched. Data is fetched using indirect addressing mode. The DPTR consist of 2 bytes DPH(Higher) DPL (Lower)
 Port P0: 8 bit port Po is for I/O in a single chip mode. In the expanded mode Po is for the data bus- cum-lower order address signals AD0-AD7
 Port P2: 8 bit port P2 is for the I/O in a single chip mode. In the expanded mode P2 is for higher order address signals A8-A15
- 8. Port P1: 8 bit port P1 is for the I/O in a single chip mode . In the expanded mode it is used for few interfacing signals.

Prepared By Mr. EBIN PM, Chandigarh University, Punjab

• The foll	owing addressing can be	used to select register b	ank
	Address Range	Register Bank	
	00H to 07H	Register Bank 0	
	08H to 0FH	Register Bank 1	
	10H to 17H	Register Bank 2	
	18H to 1FH	Register Bank 3	
• The con interrup	ncept of 4 register bank ots, this feature is very go	< is very useful. For ser od.	vicing the
The intension subrout	errupt program can use o ine can access another b	one bank and the interru ank for better performan	ipt service ce.
	Prepared By Mr. EBIN PM, C	Chandigarh University, Punjab EDULIN	NE 21

External ROM is accessed whenever the EA pin is connected to ground (=0) or when the PC contains an address higher than the last address in the internal 4KB ROM (0FFFH). 8051 designs can use internal and external ROM automatically.

B) A bit-addressable area of 16 bytes occupies RAM byte addresses 20H to 2FH; forming a total of 128 addressable bits.
An addressable bit maybe specified by its bit address of 00H to 7FH.
Eg: bit address 4FH is also bit 7 of byte address 29H
Addressable bits are useful when the program need only remember a binary event.(switch on, light off, etc.)
C) A general purpose RAM area above the bit area from 30H to 7FH, addressable as bytes.

	ARITHMETIC	LOGICAL	BOOLEAN	PROGRA
TRANSFER				BRANCHIN
MOV	ADD	ANL	CLR	LIMP
MOVC	ADDC	ORL	SETB	AJMP
MOVX	SUBB	XRL	MOV	SJMP
PUSH	INC	CLR	JC	JZ
POP	DEC	CPL	JNC	JNZ
XCH	MUL	RL	JB	CJNE
XCHD	DIV	RLC	JNB	DJNZ
	DAA	RR	JBC	NOP
		RRC	ANL	LCALL
		SWAP	ORL	ACALL
			CPI	DET

1. Data Transfer Instructions Data transfer instructions are associated with transfer of data between registers or external program memory or external data memory **SI. No Instruction Format Function Performed** 1. MOV dest, src Copy the Content of Source to Destination Used to move to/from external data memory only 2. MOVX dest, src MOVC dest, src Used to move from program memory (ROM) Only 3. PUSH src Copies one byte from source to stack top 4. POP dest Copies one byte from stack top to destination 5. Exchanges data between two sources XCH 6. Exchanges upper and lower nibbles of A 7. SWAP A EDULINE Prepared By Mr. EBIN PM, Chandigarh University, Punjab 48

a	. Data Manipulation In	structions
SI. No	Instruction Forma	at Function Performed
1.	SETB Bit	Set the indicated Bit
2.	CLR Bit	Clear the indicated Bit
3.	CPL Bit	Complement the Indicated Bit
4.	MOV C, Bit	Move the indicated bit to C(Carry Flag)
5.	MOV Bit, C	Move the C(Carry Flag) to indicated bit
6.	ANL C, Bit	Move to C(Carry Flag) the logical AND of
	Terring a strengthere in	C and the indicated bit
7.	ANL Bit, C	Move to the bit, the logical AND of
		C and the indicated bit
8.	ORL C, Bit	Move to C(Carry Flag) the logical OR of
		C and the indicated bit
9.	ORL Bit, C	Move to the bit, the logical OR of
		C and the indicated bit

					- i		
<	c ←	D7 D6	D5	D4 D3	D2	D1	^{D0} ←
iv) The A re	RRC A ; Rotat gister is shifted rig D6 D5	te RIGHT throught and bit is more D4 D3	ugh carry ved to D7, wh D2	ile the D0 mov	es into the	carry.	
v)	SWAP A ; Th swapped.	nis is a special in	D4 D3 -	ere the lower a	and upper	nibbles of A	A are

SI. No	Instruction Format	Function Performed
1.	JC target	Jump if CY=1
2.	JNC target	Jump if CY=0
3.	JZ target	Jump if the register A=0
4.	JNZ target	Jump if the register A is not zero
5.	JB bit, target	Jump if the bit=1
6.	JNB bit, target	Jump if the bit=0
7.	JBC bit, target	Jump if the bit=1. Then clear bit
8.	DJNZ byte, target	Decrement the byte, and jump if the
(1977) D.		byte is zero